metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[2-(1*H*-benzimidazol-2-yl- κN^3)-4,6dibromophenolato- κO]nickel(II)

Yu Wu,^{a,b} Bin Xie,^a Like Zou,^a Jian-Shen Feng^a and Zongqiu Hu^b*

^aDepartment of Chemistry, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, People's Republic of China, and ^bDepartment of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China Correspondence e-mail: solicitor.wu@126.com

Received 24 July 2007; accepted 3 August 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.013 Å; *R* factor = 0.065; *wR* factor = 0.180; data-to-parameter ratio = 14.6.

The title compound, $[Ni(C_{13}H_7Br_2N_2O)_2]$, an Ni^{II} complex of the Schiff base 2-(3,5-dibromo-2-hydroxyphenyl)benzimidazole, was synthesized by the reaction of 3,5-dibromosalicylaldehyde and 1,2-phenylenediamine. The molecule resides on a twofold rotation axis. The Ni^{II} atom exists in a distorted tetrahedral geometry and is coordinated by one O and one N atom from each of two 2-(3,5-dibromo-2-hydroxyphenyl)benzimidazole ligands. The crystal structure is stabilized by N-H···Br and N-H···O hydrogen bonds, which link the molecules into a chain along the *b* axis.

Related literature

For ligand synthesis, see: Elzbieta *et al.* (1964). For a related structure, see: Wang *et al.* (2003).

Experimental

Crystal data $[Ni(C_{13}H_7Br_2N_2O)_2]$ $M_r = 792.76$ Tetragonal, $I4_1/a$ a = 12.4177 (14) Å c = 33.389 (6) Å V = 5148.6 (12) Å³

Z = 8 Mo K\alpha radiation μ = 7.00 mm⁻¹ T = 292 (2) K 0.30 × 0.20 × 0.20 mm

Data collection

```
Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
T_{min} = 0.228, T_{max} = 0.335
(expected range = 0.168–0.247)
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.065$	H atoms treated by a mixture of
$wR(F^2) = 0.180$	independent and constrained
S = 0.95	refinement
2510 reflections	$\Delta \rho_{\rm max} = 0.90 \ {\rm e} \ {\rm \AA}^{-3}$
172 parameters	$\Delta \rho_{\rm min} = -0.48 \text{ e} \text{ Å}^{-3}$
1 restraint	

13205 measured reflections

 $R_{\rm int} = 0.127$

2510 independent reflections

1324 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Ni1-N1	1.957 (6)	Ni1-O1	1.984 (6)
N1-Ni1-N1 ⁱ N1-Ni1-O1	117.8 (4) 94.4 (2)	$N1-Ni1-O1^i$ $O1-Ni1-O1^i$	116.8 (2) 118.7 (3)

Symmetry code: (i) $-x + 2, -y + \frac{1}{2}, z$.

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{\begin{array}{c} N2 - H2A \cdots Br1^{ii} \\ N2 - H2A \cdots O1^{ii} \end{array}}$	0.86 (3)	2.74 (7)	3.464 (7)	143 (9)
	0.86 (3)	2.11 (8)	2.811 (9)	138 (9)

Symmetry code: (ii) $x, y + \frac{1}{2}, -z$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Sichuan Province Education Department, Sichuan, China (grant No. 2006 A110).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2430).

References

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Elzbieta, C., Zygmunt, E. & Romuald, K. (1964). Diss. Pharm. 15, 369–378.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Wang, J., Bei, F.-L. & Ma, W.-X. (2003). Chin. J. Inorg. Chem. 19, 609-612.

supplementary materials

Acta Cryst. (2007). E63, m2298 [doi:10.1107/S1600536807038214]

Bis[2-(1*H*-benzimidazol-2-yl- κN^3)-4,6-dibromophenolato- κO]nickel(II)

Y. Wu, B. Xie, L. Zou, J.-S. Feng and Z. Hu

Comment

Crystal structure and properties of 1,2-*N*,*N*-disallicydene-phenylamineato nickel(II) has been reported (Wang *et al.*, 2003). We report here the synthesis and crystal structure of bis[2-(3,5-dibromo-2-hydroxyphenyl) benzimidazole]nickel(II).

The asymmetric unit of the title compound consists of a half-molecule, with the Ni^{II} atom lying on a crystallographic twofold axis; the other half of the molecule is generated by the twofold axis (Fig. 1). The Ni^{II} atom exists in a distorted tetrahedral geometry (Table 1) and is coordinated by the O and one N atom each from two 3,5-dibromo-2-hydroxyphenyl benzimidazole ligands.

The crystal structure is stabilized by N—H \cdots Br and N—H \cdots O type hydrogen bonds which link the molecules into a chain along the *b* axis.

Experimental

3,5-Dibromosalicylaldehyde was prepared according to the literature method (Elzbieta *et al.*, 1964). To a solution of 1,2phenylenediamine (1 g) in pyridine (30 ml), one mole equivalent of 3,5-dibromosalicylaldehyde in pyridine (30 ml) was added slowly under continuous stirring and refluxed for 1 h. Then Ni(Ac)₂ (10 mmol) in DMF (10 ml) was added and the solution were refluxed for 1 h. The hot solution was filtered and allowed to stand at room temperature undisturbed for about three weeks, resulting in yellow crystals.

Refinement

The N-bound H atom was located in a difference map and refined with a N—H distance restraint of 0.86 (2) Å. C-bound H atoms were placed at calculated positions and refined using a riding model, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound, showing labelling of the non-H atoms and 20% probability displacement ellipsoids. Atoms labelled with the suffixe a are generated by the symmetry operation (2 - x, 1/2 - y, z).

$Bis [2-(1 \textit{H-benzimidazol-2-yl-}\kappa \textit{N}^3)-4, 6-dibromophenolato-}\kappa O]nickel(II)$

Crystal data	
[Ni(C ₁₃ H ₇ Br ₂ N ₂ O) ₂]	Z = 8
$M_r = 792.76$	$F_{000} = 3056$
Tetragonal, $I4_1/a$	$D_{\rm x} = 2.045 {\rm ~Mg~m}^{-3}$
Hall symbol: -I 4ad	Mo K α radiation $\lambda = 0.71073$ Å
<i>a</i> = 12.4177 (14) Å	Cell parameters from 1302 reflections
b = 12.4177 (14) Å	$\theta = 2.4 - 16.7^{\circ}$
c = 33.389 (6) Å	$\mu = 7.00 \text{ mm}^{-1}$
$\alpha = 90^{\circ}$	T = 292 (2) K
$\beta = 90^{\circ}$	Block, yellow
$\gamma = 90^{\circ}$	$0.30 \times 0.20 \times 0.20$ mm
$V = 5148.6 (12) \text{ Å}^3$	

Data collection

Bruker SMART CCD area-detector diffractometer	2510 independent reflections
Radiation source: fine-focus sealed tube	1324 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.127$
T = 292(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
φ and ω scans	$\theta_{\min} = 2.5^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2000)	$h = -15 \rightarrow 9$
$T_{\min} = 0.228, T_{\max} = 0.335$	$k = -15 \rightarrow 14$
13205 measured reflections	$l = -41 \rightarrow 41$

Refinement

Refinement on F^2

 $wR(F^2) = 0.180$

2510 reflections172 parameters1 restraint

S = 0.95

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.065$

	Secondary atom site location: difference Fourier map
	Hydrogen site location: inferred from neighbouring sites
	H atoms treated by a mixture of
	independent and constrained refinement
	$w = 1/[\sigma^2(F_o^2) + (0.0739P)^2]$
	where $P = (F_0^2 + 2F_c^2)/3$
	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{max} = 0.90 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{min} = -0.48 \text{ e } \text{\AA}^{-3}$
	Extinction correction: none
: structure-invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ		$U_{\rm iso}*/U_{\rm eq}$	
Ni1	1.0000	0.2500	0.00587	7 (4)	0.0486 (4)	
Br1	0.69106 (11)	0.20197 (9)	-0.0840	06 (3)	0.0957 (5)	
Br2	0.54458 (11)	0.61501 (10)	-0.0422	28 (4)	0.1101 (6)	
N1	0.9689 (5)	0.3813 (5)	0.03615	5 (18)	0.0519 (17)	
C1	0.7060 (8)	0.3281 (7)	-0.0523	3 (2)	0.068 (3)	
C2	0.6348 (8)	0.4068 (8)	-0.0575	5 (3)	0.069 (3)	
H2	0.5784	0.3992	-0.0756	6	0.083*	
C3	0.6467 (8)	0.5014 (8)	-0.0351	l (3)	0.073 (3)	
C4	0.7292 (8)	0.5120 (7)	-0.0096	5 (3)	0.066 (2)	
H4	0.7366	0.5759	0.0046		0.080*	
C5	0.8040 (7)	0.4306 (6)	-0.0038	8 (2)	0.054 (2)	
C6	0.7982 (7)	0.3334 (7)	-0.0261	l (2)	0.054 (2)	
C7	0.8901 (6)	0.4497 (6)	0.0259	(2)	0.0455 (18)	
C8	1.0267 (6)	0.4270 (6)	0.0663	(2)	0.0498 (19)	
C9	1.1152 (8)	0.3939 (7)	0.0879	(3)	0.073 (3)	
Н9	1.1459	0.3267	0.0833		0.087*	
C10	1.1577 (9)	0.4622 (9)	0.1164	(3)	0.085 (3)	
H10	1.2195	0.4418	0.1302		0.102*	
C11	1.1105 (10)	0.5600 (9)	0.1249	(3)	0.094 (3)	
H11	1.1388	0.6018	0.1454		0.112*	
C12	1.0223 (9)	0.5978 (8)	0.1038	(3)	0.082 (3)	
H12	0.9906	0.6641	0.1092		0.098*	
C13	0.9851 (7)	0.5306 (7)	0.0744	(2)	0.057 (2)	
01	0.8626 (5)	0.2535 (4)	-0.0244	42 (16)	0.0602 (15)	
N2	0.8956 (6)	0.5388 (6)	0.0481	(2)	0.0577 (18)	
H2A	0.867 (8)	0.601 (5)	0.052 (3	3)	0.11 (4)*	
Atomic displacemen	t parameters $(Å^2)$					
I^{1}	1 <i>L</i> ²²	1/33		U^{12}	U^{13}	U^{23}
N:1 0(• •	• /		<u> </u>	~	<u> </u>
N11 0.0)612(10) 0.030	56 (8) 0 04	80 (7)	0.0184(7)	0.000	0.000

supplementary materials

Br2	0.1109 (10)	0.0997 (9)	0.1197 (10)	0.0604 (8)	-0.0217 (7)	0.0026 (7)
N1	0.066 (4)	0.033 (3)	0.056 (4)	0.014 (3)	0.003 (3)	-0.001 (3)
C1	0.085 (7)	0.064 (6)	0.056 (5)	0.021 (5)	-0.005 (5)	-0.003 (4)
C2	0.073 (6)	0.073 (7)	0.061 (5)	0.020 (5)	-0.021 (4)	-0.004 (5)
C3	0.082 (7)	0.064 (6)	0.072 (6)	0.041 (5)	-0.003 (5)	0.012 (5)
C4	0.081 (7)	0.058 (6)	0.060 (5)	0.027 (5)	0.001 (5)	0.005 (4)
C5	0.067 (6)	0.051 (5)	0.042 (4)	0.013 (4)	0.000 (4)	-0.001 (4)
C6	0.066 (6)	0.051 (5)	0.046 (4)	0.013 (4)	0.001 (4)	0.009 (4)
C7	0.059 (5)	0.031 (4)	0.047 (4)	0.001 (4)	0.017 (4)	0.009 (3)
C8	0.045 (5)	0.055 (5)	0.049 (4)	0.006 (4)	0.003 (4)	0.010 (4)
C9	0.091 (7)	0.047 (5)	0.080 (6)	-0.004 (5)	-0.007 (5)	0.007 (5)
C10	0.098 (8)	0.098 (9)	0.060 (6)	-0.018 (7)	-0.020 (5)	0.004 (5)
C11	0.118 (10)	0.073 (8)	0.090 (7)	0.002 (7)	-0.015 (7)	-0.016 (6)
C12	0.099 (8)	0.057 (6)	0.090 (7)	0.001 (6)	-0.004 (6)	-0.021 (5)
C13	0.070 (6)	0.044 (5)	0.057 (5)	0.003 (4)	0.010 (4)	-0.001 (4)
O1	0.080 (4)	0.038 (3)	0.062 (3)	0.016 (3)	-0.009 (3)	-0.005 (3)
N2	0.067 (5)	0.041 (4)	0.065 (4)	0.015 (4)	0.006 (4)	-0.004 (3)

Geometric parameters (Å, °)

Ni1—N1	1.957 (6)	C5—C7	1.480 (11)
Ni1—N1 ⁱ	1.957 (6)	C6—O1	1.276 (9)
Ni1—O1	1.984 (6)	C7—N2	1.333 (10)
Ni1—O1 ⁱ	1.984 (6)	C8—C9	1.378 (11)
Br1—C1	1.902 (9)	C8—C13	1.413 (11)
Br2—C3	1.913 (8)	C9—C10	1.379 (12)
N1—C7	1.340 (9)	С9—Н9	0.93
N1—C8	1.359 (10)	C10-C11	1.378 (14)
C1—C2	1.329 (11)	C10—H10	0.93
C1—C6	1.442 (12)	C11—C12	1.385 (15)
C2—C3	1.400 (12)	C11—H11	0.93
С2—Н2	0.93	C12—C13	1.367 (12)
C3—C4	1.338 (13)	C12—H12	0.93
C4—C5	1.385 (11)	C13—N2	1.421 (11)
C4—H4	0.93	N2—H2A	0.86 (3)
C5—C6	1.419 (11)		
N1—Ni1—N1 ⁱ	117.8 (4)	C5—C6—C1	113.3 (7)
N1—Ni1—O1	94.4 (2)	N2—C7—N1	110.3 (7)
N1 ⁱ —Ni1—O1	116.8 (2)	N2—C7—C5	122.9 (7)
N1—Ni1—O1 ⁱ	116.8 (2)	N1—C7—C5	126.7 (7)
N1 ⁱ —Ni1—O1 ⁱ	94.4 (2)	N1—C8—C9	133.1 (8)
O1—Ni1—O1 ⁱ	118.7 (3)	N1—C8—C13	109.3 (7)
C7—N1—C8	108.0 (6)	C9—C8—C13	117.5 (8)
C7—N1—Ni1	122.7 (5)	C8—C9—C10	118.9 (9)
C8—N1—Ni1	128.8 (5)	С8—С9—Н9	120.6
C2—C1—C6	125.0 (8)	С10—С9—Н9	120.6
C2-C1-Br1	117.9 (7)	C11—C10—C9	121.4 (10)

C6—C1—Br1	117.0 (6)		C11-C10-H10		119.3
C1—C2—C3	118.5 (8)		С9—С10—Н10		119.3
C1—C2—H2	120.8		C10-C11-C12		122.1 (10)
С3—С2—Н2	120.8		C10-C11-H11		119.0
C4—C3—C2	120.2 (8)		C12—C11—H11		119.0
C4—C3—Br2	121.0 (7)		C13—C12—C11		115.1 (9)
C2—C3—Br2	118.8 (7)		C13—C12—H12		122.5
C3—C4—C5	122.0 (8)		C11-C12-H12		122.5
С3—С4—Н4	119.0		C12—C13—C8		124.9 (9)
С5—С4—Н4	119.0		C12—C13—N2		131.6 (9)
C4—C5—C6	120.9 (8)		C8—C13—N2		103.4 (7)
C4—C5—C7	117.5 (7)		C6—O1—Ni1		125.3 (5)
C6—C5—C7	121.6 (7)		C7—N2—C13		108.9 (7)
O1—C6—C5	127.4 (8)		C7—N2—H2A		145 (8)
O1—C6—C1	119.3 (7)		C13—N2—H2A		106 (8)
N1 ⁱ —Ni1—N1—C7	-137.8 (6)		C6—C5—C7—N2		-177.9 (7)
01—Ni1—N1—C7	-14.4 (6)		C4—C5—C7—N1		179.3 (7)
O1 ⁱ —Ni1—N1—C7	110.9 (6)		C6—C5—C7—N1		-1.4 (11)
N1 ⁱ —Ni1—N1—C8	51.4 (6)		C7—N1—C8—C9		-179.7 (9)
01—Ni1—N1—C8	174.9 (6)		Ni1—N1—C8—C9		-7.9 (13)
O1 ⁱ —Ni1—N1—C8	-59.8 (7)		C7—N1—C8—C13		-2.3 (8)
C6—C1—C2—C3	-2.4 (15)		Ni1—N1—C8—C13		169.5 (5)
Br1—C1—C2—C3	-178.2 (7)		N1-C8-C9-C10		178.0 (9)
C1—C2—C3—C4	1.1 (14)		C13—C8—C9—C10		0.8 (12)
C1—C2—C3—Br2	-179.9 (7)		C8—C9—C10—C11		3.0 (15)
C2—C3—C4—C5	-1.2 (14)		C9—C10—C11—C12		-3.9 (17)
Br2—C3—C4—C5	179.8 (6)		C10-C11-C12-C13		0.8 (16)
C3—C4—C5—C6	2.5 (13)		C11—C12—C13—C8		3.3 (15)
C3—C4—C5—C7	-178.2 (8)		C11—C12—C13—N2		177.0 (9)
C4—C5—C6—O1	178.4 (8)		N1-C8-C13-C12		178.1 (8)
C7—C5—C6—O1	-0.9 (13)		C9—C8—C13—C12		-4.1 (13)
C4—C5—C6—C1	-3.3 (11)		N1-C8-C13-N2		2.9 (8)
C7—C5—C6—C1	177.4 (7)		C9—C8—C13—N2		-179.3 (7)
C2—C1—C6—O1	-178.1 (9)		C5-C6-O1-Ni1		-7.4 (11)
Br1-C1-C6-O1	-2.3 (10)		C1-C6-01-Ni1		174.4 (6)
C2—C1—C6—C5	3.4 (13)		N1—Ni1—O1—C6		12.9 (6)
Br1—C1—C6—C5	179.2 (6)		N1 ⁱ —Ni1—O1—C6		137.1 (6)
C8—N1—C7—N2	0.7 (8)		O1 ⁱ —Ni1—O1—C6		-111.0 (6)
Ni1—N1—C7—N2	-171.7 (5)		N1—C7—N2—C13		1.1 (8)
C8—N1—C7—C5	-176.1 (7)		C5—C7—N2—C13		178.1 (7)
Ni1—N1—C7—C5	11.5 (10)		C12—C13—N2—C7		-177.1 (9)
C4—C5—C7—N2	2.8 (11)		C8—C13—N2—C7		-2.4 (8)
Symmetry codes: (i) $-x+2, -y+1/2, z$.					
Hydrogen-bond geometry (Å, °)					
D—H···A		D—H	H···A	$D \cdots A$	D—H··· A

supplementary materials

N2—H2A…Brl ⁱⁱ	0.86 (3)	2.74 (7)	3.464 (7)	143 (9)
N2—H2A····O1 ⁱⁱ	0.86 (3)	2.11 (8)	2.811 (9)	138 (9)
Symmetry codes: (ii) $x, y+1/2, -z$.				

